Research Area: Chemistry and Physics of the Earth System
Coordinators: Matteo Alvaro, Mara Murri, Stefania Righetto, M. Chiara Domeneghetti
ERC sectors: PE10_10 Mineralogy, petrology, igneous petrology, metamorphic petrology
1. Deep Earth Geodynamics
Study of the physicochemical properties of materials and minerals under environmental and non-environmental conditions to determine elastic properties essential for reconstructing deep-earth dynamics.
2. Elastic Geothermobarometry
Development of geothermobarometric methods based on the elastic response of host inclusion systems and their application to determine pressure-temperature equilibria in crustal and mantle rocks and samples.
3. Intracrystalline Geothermometry
Development of methodologies for the geothermometric and geospidometric study of crustal, mantle, and planetary rock samples by studying intra- and intercrystalline diffusion processes.
4. Study of Planetary Materials
Study of meteorite samples to reconstruct magmatic processes on other planetary bodies and to reconstruct the origin of carbon phases contained in ureilitic meteorites and carbonaceous chondrites.
Nestola Fabrizio; Angel Ross J.; Mazzucchelli Mattia L.; Cámara Fernando; Mihailova Boriana D.; Murri Mara; Prencipe Mauro; Scambelluri Marco; Campomenosi Nicola; Fioretti Anna Maria; Nimis Paolo; Casati Nicola P.M.; Marone Federica; Milani Sula; Anzolini Chiara; Campione Marcello; Gatta Giacomo Diego; Harris Jeffrey Walter; Jones Adrian P.; Boffa-Ballaran Tiziana; Fioretti Anna Maria; Saljé Ekhard K.Hermann; McCammon Catherine A.
1. Progetto ERC - TRUE DEPTHS (sito)
2. Progetto IMPACT
3. Progetto DYNASTAR
4. Progetto OL-Bodies (ASI-INAF)
5. Progetto Commander (PNRA)
1. Geotermobarometria
Alvaro, M., Mazzucchelli, M. L., Angel, R. J., Murri, M., Campomenosi, N., Scambelluri, M., . . . Morana, M. (2020). Fossil subduction recorded by quartz from the coesite stability field. Geology, 48(1), 24-28. doi:10.1130/G46617.1
Gilio, M., Scambelluri, M., Angel, R. J., Alvaro, M., & Evans, K. (2021). The contribution of elastic geothermobarometry to the debate on HP versus UHP metamorphism. Journal of Metamorphic Geology. doi:10.1111/jmg.12625
Gonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz‐in‐Zircon. Journal of Geophysical Research: Solid Earth, 126(6). doi:10.1029/2021jb022080
Mazzucchelli, M. L., Angel, R. J., & Alvaro, M. (2021). EntraPT: An online platform for elastic geothermobarometry. American Mineralogist, 106(5), 830-837. doi:10.2138/am-2021-7693CCBYNCND
Tajčmanová, L., Manzotti, P., & Alvaro, M. (2021). Under Pressure: High-Pressure Metamorphism in the Alps. Elements, 17(1), 17-22. doi:10.2138/gselements.17.1.17
2. Geotermometria
“Geothermometry” assessed on clino and orthopyroxene bearing synthetic rocks. Geochimica et Cosmochimica Acta, 227, 133-142. doi:10.1016/j.gca.2018.02.010
Murri, M., Domeneghetti, M. C., Fioretti, A. M., Nestola, F., Vetere, F., Perugini, D., . . . Alvaro, M. (2019). Cooling history and emplacement of a pyroxenitic lava as proxy for understanding Martian lava flows. Scientific reports, 9(1). doi:10.1038/s41598-019-53142-0
Murri, M., Scandolo, L., Fioretti, A. M., Nestola, F., Domeneghetti, C. M., & Alvaro, M. (2016). The role of Fe content on the Fe-Mg exchange reaction in augite. American Mineralogist, 101(12), 2747-2750. doi:10.2138/am-2016-5717
Nestola, F., Ferrari, S., Pamato, M. G., Redhammer, G., Helbert, J., Alvaro, M., & Domeneghetti, M. C. (2021). The best temperature range to acquire reliable thermal infrared spectra from orbit. Sci Rep, 11(1), 13212. doi:10.1038/s41598-021-92130-1
Vetere, F., Murri, M., Alvaro, M., Domeneghetti, M. C., Rossi, S., Pisello, A., . . . Holtz, F. (2019). Viscosity of Pyroxenite Melt and its Evolution during Cooling. Journal of Geophysical Research: Planets. doi:10.1029/2018je005851
3. Diamanti
Anzolini, C., Prencipe, M., Alvaro, M., Romano, C., Vona, A., Lorenzon, S., . . . Nestola, F. (2018). Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. American Mineralogist, 103(1), 69-74. doi:10.2138/am-2018-6184
Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D. G., Pamato, M. G., . . . Davidson, J. (2018). CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature, 555(7695), 237-241. doi:10.1038/nature25972
Nimis, P., Alvaro, M., Nestola, F., Angel, R. J., Marquardt, K., Rustioni, G., . . . Marone, F. (2016). First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. Lithos, 260, 384-389. doi:10.1016/j.lithos.2016.05.019
Nimis, P., Angel, R. J., Alvaro, M., Nestola, F., Harris, J. W., Casati, N., & Marone, F. (2019). Crystallographic orientations of magnesiochromite inclusions in diamonds: what do they tell us? Contributions to Mineralogy and Petrology
Pamato, M. G., Novella, D., Jacob, D. E., Oliveira, B., Pearson, D. G., Greene, S., . . . Nestola, F. (2021). Protogenetic sulfide inclusions in diamonds date the diamond formation event using Re-Os isotopes. Geology, 49(8), 941-945. doi:10.1130/g48651.1
4. Planetologia
Barbaro, A., Domeneghetti, M. C., Litasov, K. D., Ferrière, L., Pittarello, L., Christ, O., . . . Nestola, F. (2021). Origin of micrometer-sized impact diamonds in ureilites by catalytic growth involving Fe-Ni-silicide: The example of Kenna meteorite. Geochimica et Cosmochimica Acta, 309, 286-298. doi:10.1016/j.gca.2021.06.022
Murri, M., Smith, R. L., McColl, K., Hart, M., Alvaro, M., Jones, A. P., . . . McMillan, P. F. (2019). Quantifying hexagonal stacking in diamond. Scientific reports, 9, 8. doi:10.1038/s41598-019-46556-3